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Abstract: The integration of IoT devices in real-time data collection and predictive analytics provides transformative potential toward disaster 

forecasting and responses. However, existing research faces quite significant challenges including denoising effects, hotspot issues, inefficient 

resource allocation, overfitting of data, and complexity in decision-making. The proposed solution is a predictive analytic framework for IoT-

enabled disaster management, aimed at overcoming these limitations. The methodology is initiated through the construction of a disaster 

management network by using IoT sensors to generate synthetic data. The collected dataset is denoised using the Denoising Autoencoder (DAE) 

to get rid of noise and improve data quality. In tuning clustering and resource allocation, we apply the Tuna-Swarm Algorithm (TSA), which aided 

in efficient management of IoT resources. Switchable Normalization in a custom-designed SN-Convolutional Neutral Network architecture is 

leveraged for the resources suffering from overfitting. Disaster prediction is based on the Mobile Net-Transformer Generative Model (MN-TGM), 

an advanced system designed for proper and timely forecasting. The decision-making and resource allocation tasks are subsequently simplified 

through the use of Fault Tree Analysis as well as Decision-Making Trial and Evaluation Laboratory methods (FTA-DEMATEL). The various 

performance metrics include latency (ms), overfitting rate (%), prediction accuracy (%), model accuracy (%), and energy efficiency (%) against 

cluster count. After simulating the system in Ns3.30.1 Ubuntu with Python, its robustness and effectiveness were confirmed.   This framework 

presents a holistic solution to mitigate the existing challenges presented by IoT-enabled disaster management, ensuring timely interventions, 

exclusive allocation, and improved decision-making, thus averting disaster risks and their impacts. 
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I. INTRODUCTION

The Internet of Things (IoT) is a revolutionary and rapidly 

advancing technology which, perhaps, will change the manner 

in which we interact with our surroundings [1]. As technologies 

in communications, computing, and embedded systems have 

matured rapidly, IoT systems have been deployed increasingly 

in a wide range of application contexts [2]. In recent years we 

have facilitated the emergence of the Internet of Things (IoT) 

as one of the fastest-growing sources of data [3]. Disaster 

management is one of the many application areas where recent 

developments in IoT technology are helpful. Because it is so 

common and has the potential to save lives, the Internet of 

Things is essential to disaster management. Even if disasters 

cannot be predicted with precision, damage can be minimized 

with prompt relief efforts. Planning for disaster management is 

mostly dependent on the region's topography, climate, habitat, 

etc., as well as the resources that are accessible. Emergent IoT 

networks, in which objects (sensor nodes) are linked to one a 

different one, have recently been used to construct real-time 

monitoring and catastrophe warning systems. One notable 

example of this being a significant component of IoT is wireless 

sensor networks (WSN), which are frequently used to monitor 

natural catastrophes in distant and inaccessible regions [4, 5, 6]. 

In the recent times, the wireless sensor network has become a 

popular option because of its simplicity and easy maintenance, 

price performance of sensors, and high data accuracy, since the 

wireless sensors do not normally need much power, leading 

them to exist longer [7]. Smart sensors and actuators lack the 

capacity for large storage, thus allowing a small number of 

battery cells to be used for a smart connectivity in the IoT 

context. So, the data transmission process is crucial in the 

transition of data flow from the IoT layer to cloud-edge layer 

for processing and storage. Based on multiple research works, 

IoT is structured for treating safety-critical case studies like 

wildfires, earthquakes, flooding, blizzards, hurricanes, seasonal 

tornadoes, and landslides for the management of disasters [8]. 

Disasters are aberrant events that occur naturally or otherwise 

and lead to massive damages, destruction, and human suffering. 

Disasters causing these enormous losses around the globe, both 

economic and human, and the disaster response systems have 

grown [9]. These are just a few of the reasons why a Disaster 

Management System with IoT and AI capabilities remains one 

of the most important systems in the world [10]. Disaster 

management is the implemented holistic strategy that involves 

five elements prevention, protection, preparedness, emergency 

actions, and recovery [11]. DM includes the management of 

disaster risks and impacts. It comprises good riskiness, good 

resuscitation, good preparedness, and good recovery. It 

includes organization, command, and use of administrative 

resources against disasters. The practitioners of this domain are 

trying to lessen or avert the devastation from natural disasters 

and provide immediate help to the victims of the disaster and 

rapid recovery. Various other tasks provisioned the 

operationalization of this domain-rendered, including risk 

assessment, preparedness, mobilization, logistics, and housing 

or servicing [12]. Disasters such as these usually develop so fast 

that provides certain characteristics; these may include 

complexity, multiplicity, and extension of impact intensity, 

great destructiveness, and propagation of determinants of 

disaster in variable combinations [13]. There are various 

disaster events caused by an earthquake or an environmental 

hazard. Most disasters cause fatalities and tackle property 

damage [14]. Because of the high level of population density, 

lack of resettlement facilities and low capacities for hazard 

reduction from the adverse fates of nature on human lives, 



systems of buildings, roads, bridges, etc., developing countries 

are more prone to very high risk and have very little capacity to 

cope with them [15]. Reducing loss of human life in any kind 

of disaster is one of the five major objectives of any disaster 

management system. Mainly, lives are to be saved-the task 

remains the same regardless of whether a disaster is through the 

form of a natural disaster or through traffic accidents. It 

becomes highly significant to develop an efficient disaster 

management system (DMS) aimed at protecting lives during 

such times. High-quality images must be taken and supplied to 

the rescue operation to assist the DMS in its rescue work. 

Perhaps to obtain such data one needs the use of technological 

applications and devices [16]. Implied accordingly are two 

different concepts, disasters and threatening events to 

nowadays described as threats, and it is in this sense that 

disasters could be said to develop when humans are exposed, 

becoming defenceless against said threats or vulnerabilities to 

disasters [17]. However, the existing approaches with several 

node deployment processes assume uniformity, which is 

impractical. For certain practical applications, the nodes are 

placed in the network in almost no uniform pattern. Hence, 

clustering and routing would appear to be the ideal solutions to 

disaster management in IoT networks. The clustering process-

Separates the nodes from the entire body of nodes within the 

capture area and groups them together in a generalized manner-

creates a few clusters, every one of which is led by a leader 

referred to as the CH. All other nodes within a cluster are 

referred to as CMs. The CH is mostly accountable for collecting 

sensed data from its CMs and forwarding it to either the BS or 

multiple relay nodes. Additionally, disaster management, in 

fact, requires efficient routing protocols with random node 

deployment. Routing protocols provide the mean of delivering 

data. They determine what specific addressing information will 

be forwarded by the packet based on the characteristics of the 

internetwork. The routing procedures find best paths to 

destinations depending on some criteria like energy, 

distinctiveness, link quality, and so on. Since the choice of CHs 

was tedious and the route to be taken must be optimal, it can be 

categorized as an NP problem, which is solvable using meta-

heuristic optimization techniques [18, 19]. However in the 

research aim is to utilize IoT-enabled predictive analytics and 

real-time monitoring for disaster management.  

 

 

A. Motivation & Objectives 

Disaster management has encountered several problems, 

such as uncertainty in data, misallocation of resources, and the 

necessity of efficient decision-making processes. An 

Innovative technology offering promising solutions but with 

serious limitations to be overcome for enhanced disaster 

response. The following are the main issues raised by existing 

works: 

➢ Impacts in Denoising: The major issue of disaster 

management is noise-induced uncertainties due to 

noisy input data and irrelevant factors that 

significantly impact model accuracy. In the absence of 

proper pre-processing for removing noise and 

overfitting, disaster prediction will not be reliable and, 

thus, prevent effective decision-making. 

➢ Limitations in Hotspot Issues Resolution in IoT 

Networks: The proposed method has limitations in 

resolving the hotspot issues within IoT networks. 

Although an unequal clustering mechanism is 

introduced, challenges persist in the effective 

management of IoT network performance in the 

context of disaster scenarios. 

➢  Inefficient Resource Allocation and Deployment: 

Allocating and deploying resources based on disaster 

categories remains a limitation, as the current 

mechanisms do not always adapt efficiently to the 

rapidly changing demands of an emergency. This 

results in delays and inefficiencies in emergency 

management. 

➢ Data Overfitting Issues:  In existing methods faces 

challenges with data overfitting and the limited 

resolution of scalograms, which can degrade model 

performance and accuracy. While dropout layers help 

mitigate overfitting, the model's generalization still 

faces limitations that hinder optimal disaster 

prediction. 

➢  Need for More Advanced Machine Learning 

Algorithms: Although the results from CNN and 

LSTM models are effective, there is a need for further 

exploration of more advanced machine learning 

algorithms, such as Transformer models, to enhance 

the accuracy and prediction capabilities for disaster 

management. 

➢ Challenges in Community Involvement and 

Decision-Making: A significant limitation of IoES 

implementation is the challenge of addressing the 

diverse needs and preferences of various communities. 

Additionally, ensuring effective involvement of these 

stakeholders in decision-making processes remains 

complex and resource-intensive, impeding the 

potential for full IoES integration in disaster 

management. 

The research goal is to utilize IoT-enabled predictive 

analytics and real-time monitoring for disaster management. 

The primary objectives are  

 

➢ Develop a robust framework for data collection and 

pre-processing to address noise and ensure accurate 

predictions. 

➢ Implement efficient clustering techniques to optimize 

resource allocation and resolve hotspot issues in 

disaster-prone regions. 

➢ Enhance model generalization and prediction accuracy 

through advanced training techniques. 



➢ Design hybrid models for precise forecasting of 

disaster events based on spatial and temporal data. 

➢ Incorporate decision-making methods for a complete 

disaster risk analysis and effective real-time response. 

 

B. Research Contribution 

 

This research explores innovative data-driven solutions for 

improving disaster management by utilizing IoT-enabled 

predictive systems and real-time monitoring. It seeks to 

enhance disaster preparedness, minimize response times, and 

optimize resource allocation to mitigate the impact of natural 

and man-made crises effectively. The research highlights were 

given as follows:  

 

➢ To Demonstrated the applicability of the Denoising 

Autoencoder (DAE) for pre-processing disaster data to 

eliminate noise and irrelevant factors, improving 

model reliability.  

➢ A Tuna-Swarm Algorithm (TSA) is to optimize 

clustering with resource allocation in IoT-enabled 

disaster management networks. 

➢ Then the Applied Switchable Normalization within 

(SN-CNN) framework to counter overfitting and 

enhancing generalization capabilities of the model for 

disaster scenarios.  

➢ The Proposed MobileNet-Transformer Generative 

Model (MN-TGM) for advanced disaster prediction 

with lightweight architectures and attention 

mechanisms, which gives better feature extraction 

along with superior temporal insights. 

➢ Finally Integrated fault tree analysis and DEMATEL 

(FTA-DEMATEL) methodologies for the fine-tuning 

of disaster risk evaluation and the decision-making 

process.  

C. Paper Organization 

 The remaining portions of this work are structured as 

follows. The presented methodologies and literature evaluation 

are provided in Section II. In Section III, the issue with the 

description is supplied. The recommended research technique, 

including the protocol and algorithm, is described in Section IV. 

In Section V, simulation results are obtainable along with a 

comparison between the recommended strategy and existing 

approaches. The proposed method is explained in Section VI. 

II. LITERATURE SURVEY 

 This section summarizes and examines the major research 

gaps addressed in the previous works. The author of [20] 

describes an “ensemble learning approach based on Bayesian 

Model Combination (BMC-EL)” that incorporates IoT 

technology in predicting the flood depth in coastal cities. It 

introduces flood intensity classification and K-fold cross-

validation in training subsets with the help of base models like 

BPNN and RF. Real flood data from Macao validates the 

reliability and accuracy of the BMC-EL approach in flood 

prediction through experiments. However their future research 

will apply more comprehensive datasets to the design and 

refinement of street flooding prediction models with higher 

precision. Information technology will advance so that richer 

and more diverse data concerning flooding and its causes can 

be collected. The author in [21] presents an IoT-based prototype 

to gather hydrological and meteorological data, such as water 

flow, level, temperature, discharge, humidity, direction and 

wind speed. Using the LSTM model, the collected data is 

analyzed to categorize flood actions into dissimilar alert levels. 

Additionally, a new method for defining water discharge is 

proposed, considering river flow, average depth and sectional 

area width. To further improve the accurateness of flood 

forecasting, the scheme could be combined with future remote 

sensing technologies and geographic information systems.  

 The author in [22] looks into the crucial role AI plays in 

the four phases of the disaster management process, tracking 

and mapping, recovery operation, and others. Here, it brings out 

a good integration of AI with GIS and RS for efficient planning, 

analysis, and situational awareness. Thereby, these 

technologies, being machine learning and geospatial analysis, 

help have quicker and more efficient hazard and disaster 

responses and enhance decision-making in real time. 

Furthermore Combining AI technology, large complex 

multispectral datasets, and Geographic Information Systems 

possess vast opportunities in preventing or reducing damages 

brought upon by natural disasters as well as man-made 

tragedies. This is because team success depends on more than 

merely managing information and analytical powers. Other 

integral technological components come in the picture that 

improves upon disaster team effectiveness. The authors of [23], 

presents two blocks: Block-I employs a CNN to sense and 

identify natural disasters and Block-II applies a distinct CNN 

for classifying disaster intensity levels using different filters 

and parameters. This approach enhances the accuracy of 

detection as well as disaster categorization. The blocks work in 

tandem to provide a full solution for disaster monitoring. 

However, the real-time data handling would face problems with 

the complexity of the model and high computationally 

demanding. This one depends upon the quality and kind of 

training data and has its performance limitations in scenarios 

varying. The classification accuracy is bound to reduce with 

very rare or unprecedented events like disaster. 

 The author of [24] presents the integration of autoencoder 

and convolutional neural network, 3S-AE-CNN, can estimate 

earthquake magnitude and location very fast within 3 seconds 

from the onset of the P-wave. The model, trained on seismic 

data from Japan’s Hi-net network, accurately predicts 

earthquake parameters and transmits them via an IoT system for 

rapid disaster response. Compared to traditional methods, the 

3S-AE-CNN model demonstrates improved accuracy in 

magnitude and location estimation, proving its effectiveness for 

Earthquake Early-Warning Systems (EEWS). However the 

limitations of this work is the training of the encoder put at the 



head of the CNN that simultaneously conducts feature 

extraction, down sampling, and learning about the event 

magnitude and location. There will be effort to estimate an 

accurate warning time for a particular site by including factors 

such as the nature of the event, the station data, and locations of 

the site. The author of [25] proposes a framework that integrates 

optical remote sensing (Sentinel-1) and GIS data to 

dynamically measure flood hazard and risk levels in the Trieste, 

Muggia Municipalities and Monfalcone. Explainable machine 

learning methods, particularly the Random Forest model, were 

used to generate flood hazard maps, achieving a high F1-score 

of approximately 0.99. Flood risk estimation combined a rule-

based method for experience and vulnerability with dynamic 

flood hazard valuation for a comprehensive evaluation. 

However, the scarcity of annotated datasets is a severe issue for 

the domain regarding training and evaluation of ML models that 

are designed for the detection and monitoring of floods through 

remote sensing methods. Furthermore, the low resolution in 

terms of temporal acquisition frequency of satellite imagery is 

very challenging because it does not allow them to monitor 

floods in real time as they evolve.  

III. PROBLEM STATEMENT 

 This research explores innovative data-driven solutions for 

improving disaster management by utilizing IoT-enabled 

predictive systems and real-time monitoring. It seeks to 

enhance disaster preparedness, minimize response times, and 

optimize resource allocation to mitigate the impact of natural 

and man-made crises effectively. Additionally, this study offers 

research solutions for the mentioned issues.  

Specific Problem Definition:   

 The author in [26] focuses on developing an accurate flood 

susceptibility map for the Haraz watershed in Iran by means of 

an innovative modeling method known as DBPGA, optimized 

by the Genetic Algorithm by integration of the Deep Belief 

Network and the Back Propagation procedure. For this task, a 

database was designed using the ORAE technique containing 

ten training factors and 194 flood positions. The main issues are 

detailed below; 

➢ The biggest challenge in disaster management is noisy 

input data or some irrelevant factors, which creates 

uncertainty. Smoothing out the noise and fitting by 

preprocessing may significantly give a boost to the 

correctness of the models for reliable predictions of 

disasters. 

 The author in [27] introduces an IoT-enabled Energy-

Aware Metaheuristic Clustering with Routing Procedure for 

Real-Time Disaster Managing, EAMCR-RTDM. The 

EAMCR-RTDM approach is dedicated to optimizing node 

energy consumption with respect to the peculiarity of disaster-

prone regions. For this reason, it uses a method called Yellow 

Saddle Goatfish-Based Clustering, YSGF-C, for the choice of 

cluster head and cluster organization. In addition, an Enhanced 

Cockroach Swarm Optimization algorithm for multi-hop 

routing, termed as ECSO-MHR, is proposed to discover the 

optimal routing paths. YSGF-C and ECSO-MHR both have 

employed fitness purposes based on varied input parameters to 

boost energy efficiency and prolong the network lifetime. The 

issues with this work are as follows: 

➢ Here the limitations of these proposed methods were 

improved by the strategy of unequal clustering 

mechanism to resolve hot spot problems in the IoT 

networks.  

 The author in [28] demonstrates to classified earthquakes 

by their magnitude and impact, using global data from 

earthquakes between 1900 and 2021. Using historical patterns, 

numeric thresholds were determined to classify the magnitude, 

fatalities, injuries, and damage produced by earthquakes as low, 

medium, and high. Classification scheme after an earthquake 

incident can be used to estimate total loss by taking magnitude, 

number of people who have died and people that were injured, 

and money spent. The main issues are detailed below, 

➢ The distribution and use of resources for emergency 

management are limited by the specific disaster class 

that determines the scope, allocation, and 

prioritization of resources. Effectively managing 

overlapping or unclassified disaster scenarios may 

become more challenging as a result. 

 The author in [29] explores SCALODEEP that is a deep 

learning-based detection basis of earthquakes by scalogram and 

skip connection, thereby extracting the higher order features out 

of three-component seismograms. The algorithm is based on the 

training data with North California, and test results show great 

accuracy while detecting seismic signals even for low 

magnitudes. Compared to the traditional model and new deep 

learning-based models recently developed, it outperforms with 

higher generalization. So, the work improves detection systems 

in the earthquake mechanism and sheds insight into making 

robust deep learning models for analysing seismicity. The 

challenges that come across those tactics are listed below, 

➢ In this research, Data Overfitting and the reduced 

resolution of scalograms on SCALODEEP model 

where is challenging in terms of low efficiency and 

accuracy. To cope an overfitting, dropout with the rate 

of 0.2 is applied for making better generalization at 

trainability. 

 

The author in [30] presents an IoT-assisted flood 

management system designed to collect data from both radar 

and environmental sensors to predict eventual floods. A 1D-

CNN captures spatial patterns, but an M-LSTM handles the 

temporal dependences in multivariate time-series data, showing 

better results with an MSE of 0.018. The main issues are 

detailed below, 

 

➢ Here the limitations of these methods such as CNN 

and LSTM models are previously less efficient, a 

deeper search for more innovative ML procedures, 

like Transformer models, may help to enhance the 

accurateness of predictions. 



 The author in [31] explores this further as an Internet of 

Things-related device used in improving emergency responses 

and disaster management using real-time sensor and IoT 

devices. It reviews potential benefits, challenges, and risks from 

deploying the IoES technology toward the public, in which its 

safety depends upon and what's at the root of public crisis and 

risk management. The issues with this work are as follows: 

➢ A limitation of IoES implementation is the difficulty 

in meeting the different needs and preferences of 

various communities and stakeholders. Moreover, it 

can be complex and resource-intensive to ensure that 

these groups are effectively involved in decision-

making processes. 

 

Research solutions:  

To address the problems addressed by cutting-edge 

methods, and to secure multi-user communication channels in 

the quantum network that concentrates on improving query 

efficiency, eavesdropping detection, and secure key exchange. 

To address the problems addressed by cutting-edge methods, 

and to predict the disaster in real-time monitoring using IoT 

sensors for enhancing the disaster management system. Initially 

we utilize the Denoising Autoencoder (DAE) will be used to 

handle the uncertainties in noisy input data and irrelevant 

factors. Thus, that noise removal and overfitting prevention 

during preprocessing will definitely improve the accuracy of 

the reliable disaster prediction models. This issue is to 

overcome the unequal clustering mechanism and solve the hot 

spot issues in IoT networks by using the Tuna-Swarm-

Algorithm (TSA) for clustering. The optimal Resource 

Allocation minimizes the total risk: Fraction of unmet Demand, 

by distributing scarce emergency resources to clusters. Given 

the demand matrix, priority rating and the constraint on the 

available resource, the optimum is determined. It produces an 

allocation table with allocated resources in each cluster ranked 

according to priorities and demands. Effective overcoming of 

data overfitting, low resolution of proposed methods can embed 

Switchable Normalization into CNN architectures to select the 

best among different normalization methods: batches, layers, or 

instances of normalization and aid in achieving stable learning 

while minimizing the risk of overfitting. Armed with a high-

quality time-frequency resolution technique, guarantees robust 

feature extraction and far better generalization. A hybrid model 

combines feature extraction using Mobile Net and the new 

generative Transformer model, which captures more complex 

dependencies in the data, thus yielding a better prediction 

accuracy. MobileNet, because of its light structure, offers rapid 

spatial feature learning, while the Transformer uses its attention 

mechanism to get temporal or contextual insights. As such, this 

fusion is the novelty called the MobileNet-Transformer 

generative model MN-TGM and streamlining the overall 

prediction considerably. This technique combines Fault Tree 

Analysis and DEMATEL (FTA-DEMATEL) for better 

decision-making and oversight in disaster management. FTA 

identifies potential failures in systems and their causes, while 

DEMATEL analyzes interdependence between factors that 

might influence disaster outcomes. The combination offers a 

novel approach to improving the quality of both preventive and 

responsive mechanisms in disaster management. Integration 

would allow for a more holistic view of analysis in terms of 

disaster risks and resource allocation. 

IV. PROPOSED WORK  

The proposed methodology utilizes IoT-enabled predictive 

analytics and real-time monitoring for disaster management. It 

involves synthetic data collection, denoising, clustering for 

resource allocation, and training to prevent overfitting. The 

hybrid prediction model, decision-making, ensures proper 

forecasting and effective disaster response. Fig 1 represents the 

overall architecture of proposed methodology.  The proposed 

methods are as follows:  

 

➢ Synthetic data Collection using the IoT sensors 

➢ Denoising the data  

➢ Clustering and Resource Allocation 

➢ Training to mitigate the overfitting 

➢ Prediction  

➢ Decision making  

 

A. Synthetic data collection using the IoT sensors  

 

Synthetic data can be created using simulation models that 

simulate real environmental conditions to collect data about 

temperature, humidity, wind speed, and sensor readings from 

IoT devices. Such models can replicate a considerable number 

of scenarios such as various types of weather, sensors 

performance, and other features of the environment. This form 

of generating synthetic data proves helpful in testing and 

validating sensor networks and algorithms before these 

applications are used in real-world activities. This will ensure 

that it will work properly in most environmental settings by the 

IoT devices sensor- equipped to capture the data, which is then 

saved and processed and assessed in real time. 

 

B. Denoising the Data 

 

After the data collection we need to denoising the gathered 

data. The application of Denoising Autoencoders (DAE) 

offers a way for the removal of noise and irrelevant components 

that may otherwise affect the accuracy of such a prediction. 

DAE also filters uncertainties from the model caused by the 

quality of data input used. This mainly aims at improving model 

precision by removing all those extraneous elements that make 

this model prone to overfitting. This step focuses the system on 

the most relevant information, thereby allowing enhanced 

accuracy and performance in further analysis. 
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                                                           Fig 1 The overall architecture of proposed methodology  

 

a. Denoising autocoders  

 

Denoising Autoencoders (DAE) are neural networks that 

clean the input by removing noise. The testing starts with a 

corrupted input 𝕩𝑛𝑜𝑖𝑠𝑦 , which goes into the encoder and appears 

in the latent representation 𝕪 after the processing logic being 

𝕪 = 𝑓𝜃(𝕩𝑛𝑜𝑖𝑠𝑦). 𝑓𝜃 Is the Encoding function in the DAE is 

parameterized by 𝜃. It maps noisy input 𝕩𝑛𝑜𝑖𝑠𝑦  to latent space 

representation 𝕪. The decoder produces the solution 𝕩 for the 

cleaning up and that is done in a way with the version:  

𝕩 = 𝑔𝛿(𝕪). The term 𝑔𝛿  is the decoding function in the DAE is 

parameterized by 𝛿. It reconstructs 𝕩 from the latent 

representation 𝕪. To optimize it, DAEs minimize a loss function 

ℓ that combines from distortion on one hand with spatial and 

spectral fidelity on the other. The term 𝛼 is the weighting 

parameter regulates between spatial and spectral fidelity in the 

loss function.  

 

ℓ =  𝛼. 𝑀𝑆𝐸 +  (1 − 𝛼). 𝑃𝑆𝐸                                                (1) 

 

Mean square Error (MSE) provides accuracy with 

respect to the spatial domain, while the power spectrum error 

(PSE) ensures accuracy with respect to the frequency 

domain. 𝑀 Is the number of samples and the 𝕩𝑖 is the 𝑖th true 

data sample. The term 𝐻 is the frequency bins in the power 

spectrum of the signal.  

 

𝑀𝑆𝐸 =  
1

𝑀
∑ (𝕩𝑖 − 𝕩𝑖)

2𝑀
𝑖=1                                                      (2) 

 

𝑃𝑆𝐸 =  
1

𝐻
∑ | log 𝑇𝑡𝑟𝑢𝑒(𝑗) − 𝑙𝑜𝑔𝑇𝑝𝑟𝑒𝑑(𝑗)|2𝐻

𝑗=1                       (3) 

 

Here,  𝑇𝑡𝑟𝑢𝑒  and 𝑇𝑝𝑟𝑒𝑑 denote the power spectra of the 

true and predicted signals, respectively. This composite loss 

function allows DAEs to properly denoise the data whilst 

retaining various characteristics of the signals important for 

improving prediction accuracy and mitigating overfitting risks 

in predictive models. 
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Fig 2 Denoising Autoencoder Architecture 

 

Fig2 illustrates the architecture of denoising autoencoder. 

The Denoising Autoencoder (DAE) consists of several key 

components: an encoder, latent space and decoder. The encoder 

compresses the noisy input 𝕩𝑛𝑜𝑖𝑠𝑦  into a latent representation 

using dense layers, batch normalization, ReLU activation, and 

dropout for regularization. The latent space contains the main 

features of the data in compact form. The decoder reconstructs 

the denoised output 𝕩, reversing the encoding process by 

passing through dense layers with linear and sigmoid 

activations. The architecture achieves robust noise reduction 

while maintaining input fidelity with a combination of 

activation and normalization techniques.   

 

C. Clustering and Resource Allocation 

 



Following denoising, the process is followed up by 

clustering. Here, Tuna Swarm- Algorithm (TSA) techniques 

are used on IoT data for group-cluster formation based on the 

demand and priority of patterns. Such a mechanism helps avoid 

hotspot issues and ensure proper distribution of resources. TSA 

lets the best-fit clusters in which minimum risks are guaranteed 

to obtain adequate resources for each cluster. Then, based on 

priorities and demands, an allocation table is prepared to deploy 

resources in real time, ensuring that the resources get 

distributed efficiently to mitigate the risks in disaster areas. 

 

a. Tuna Swarm based clustering Algorithm 

 

Tuna Swarm-Algorithm (TSA) is clustering-based 

optimization for IoT data management that simulates the 

schooling behaviour of tuna. The clustering is based on the 

demand and priority, ensuring effective resource allocation. 

The very first step of the algorithm states the initialization of 

some major parameters, such as the number of tunas 𝔫, the 

search space dimension 𝔼, maximum number of iterations 𝕀, 

and population of tunas so defined as  

 

𝒳𝔦 = [𝒳𝔦1, 𝒳𝔦2, … , 𝒳𝔦𝔼]                                                           (4) 

 

       Where, 𝔦 = 1, 2, … , 𝔫 . The actual candidate solution for the 

clustering process is given by the position of each tuna in the 

search space, expressed by 𝒳𝔦. To ascertain the relative quality 

of each position of the tuna, the fitness function 𝔉(𝒳𝔦) is 

defined, one that aims to minimize risks 𝒬(𝒳𝔦) while 

maximizing resource expenditure ℰ(𝒳𝔦) . The fitness function 

has this form: 

 

𝔉(𝒳𝔦) = 𝔳1. 𝒬(𝒳𝔦) +  𝔳2. ℰ(𝒳𝔦)                                          (5) 

 

     By definition, 𝒬(𝒳𝔦) indicates the current market risk for a 

given position, whereas ℰ(𝒳𝔦) quantifies the compactness of 

the cluster. The weighted parameters 𝔳1 and 𝔳2 are obstacle 

weights employed in balancing the risk and objectivity with 

regard to the compactness of the cluster.  Position updates for 

each tuna are according to swarming rules as determined by its 

local leader position 𝒳𝑙𝑒𝑎𝑑𝑒𝑟   and distance of the other tunas. 

The update rule is defined as: 

 

𝒳𝔦
𝕀+1 = 𝒳𝔦

𝕀 +   𝔰. (𝒳𝑙𝑒𝑎𝑑𝑒𝑟 − 𝒳𝔦
𝕀)                                         (6) 

 

      Where 𝔰 is a random number in the range of [0,1], which 

signifies an exploration parameter that defines the extent of 

randomness in the tuna movement. 

 

       To prevent hotspots, which occur when certain clusters 

become too concentrated, a penalty term 𝒯(𝒳𝔦) is introduced to 

ensure balanced clusters. The newly adjusted fitness function 

is: 

 

𝔉′(𝒳𝔦) =  𝔉(𝒳𝔦) +  𝜆. 𝒯(𝒳𝔦)                                                   (7) 

 

       Where 𝜆 is the penalty coefficient that regulates the 

effectiveness of the penalty term. 

 

       The cluster assignment of IoT data points is done by 

constructing the Euclidean distance between 𝔢𝔨 and the 

respective cluster centre 𝒳ℰ𝔦. The distance is calculated as: 

 

𝔢(𝔢𝔨 , 𝒳ℰ𝔦 ) =  ∑ (𝔢𝔨𝓂 − 𝒳ℰ𝔦 ,𝓂)
2𝒹

𝓂=1                                       (8) 

 

        Since 𝔢𝔨 =  [𝔢𝔨1,𝔢𝔨2,….,𝔢𝔨𝒹 ]signifies the IoT data point, and 

𝒳ℰ𝔦 =  [𝒳ℰ𝔦1, 𝒳ℰ𝔦2, … , 𝒳ℰ𝔦𝒹 ] is the cluster centre. Each point 

represents a data point closest to the centre of a cluster 

according to this distance. 

 

       As the last, the algorithm iterates over clustering by 

updating the positions and re-evaluating fitness until 

convergence or the maximum number of iterations 𝕀 is reached. 

This will ensure optimal clustering of IoT data effective 

resource management. The tuna swarm based clustering 

algorithm pseudocode was given below as pseudocode 1. 

 

Pseudocode 1: Tuna Swarm based clustering Algorithm 

1. Initialize the parameters: 

o 𝔫: Number of tunas (search agents) 

o 𝔼: Search space dimension 

o 𝕀: Maximum number of iterations 

o Population of tuna’s eq.4 

2. Initialize the candidate solutions (positions of tunas) in 

the search space. 

3. For each tuna agent 𝔦 = 1 𝑡𝑜 𝔫 : 
o Calculate the fitness function eq.5 

o Calculate the risk 𝒬(𝒳𝔦)  and resource 

expenditure ℰ(𝒳𝔦)    

o Set the initial cluster centre and evaluate 

fitness. 

4. For each iteration(𝔦 = 1 𝑡𝑜 𝕀  ): 

• Select the leader tuna 𝒳𝑙𝑒𝑎𝑑𝑒𝑟  with the best 

fitness value 

• Update the position of each tuna using the 

update rule using eq.6, where s is a random 

number in [0, 1] 

• Calculate the new fitness eq.7, introducing 

penalty term 𝒯(𝒳𝔦) to avoid hotspot issues. 

• Re-evaluate the fitness for each tuna. 

• Assign each IoT data point 𝔢𝔨 to the nearest 

cluster centre 𝒳ℰ𝔦 based on the Euclidean 

distance using eq.8 

• Check for convergence (or max iterations 

reached). If converged, terminate; otherwise, 

continue iterating. 

5. Return the optimal cluster centres as the result of the 

clustering process. 

 

D. Training to Mitigate Overfitting 

 



In order to enhance the model's performance and prevent 

overfitting, the system implements Switchable Normalization 

within its SN-CNN architecture. SN adaptively selects the best 

normalization strategy: Batch, Layer or Instance to stabilize 

learning in such a way that the model does not overfit the 

training data. This makes generalization better so that the model 

can handle unseen data even better. The advanced methods of 

time-frequency resolution ensure extracting the critical features 

with the maximum accuracy. This phase allows the model to 

process complex patterns and data more efficiently and increase 

predictive reliability. In the prediction phase, a hybrid model 

combining MobileNet for feature extraction and a Transformer-

based generative model for capturing data dependencies is 

deployed. 

 

a. Switchable Normalization within its SN-CNN 

 

Switchable Normalization (SN) combines the principles 

and computations of Batch Normalization (BN), Layer 

Normalization (LN), and Instance Normalization (IN) to 

dynamically stabilize learning and reduce overfitting. SN 

adaptively learns the most suitable normalization by taking a 

weighted average, using their respective means and variances. 

The normalized output is computed as: 

 

ℋ̂ =  
ℋ− 𝜇ℳ𝒩

√𝜎ℳ𝒩
2 +𝜔 

                                                                    (9) 

        In this expression, ℋ is the input feature map,  𝜇ℳ𝒩  is the 

weighted mean, 𝜎ℳ𝒩
2  is the weighted variance, and 𝜔 is a small 

constant for numerical stability. The weighted mean  𝜇ℳ𝒩  and 

variance 𝜎ℳ𝒩
2  is respectively given as: 

 

 𝜇ℳ𝒩 = 𝜗BN𝜇BN + 𝜗LN𝜇LN +  𝜗IN𝜇IN                                (10) 

  

𝜎ℳ𝒩
2 = 𝜗BN𝜎𝐵𝑁

2 +  𝜗BN𝜎𝐿𝑁
2 +  𝜗BN𝜎𝐼𝑁

2                                 (11) 

  

      The means over batch-wise, layer-wise, and instance-wise 

dimensions are represented by the symbols 𝜇BN,𝜇LN,𝜇IN. In the 

same vein, the variances are represented by 𝜎𝐵𝑁
2 ,𝜎𝐿𝑁

2 ,𝜎𝐼𝑁
2 . The 

weights 𝜗BN, 𝜗LN , 𝜗IN are learnable parameters that meet the 

following conditions: 

 

𝜗BN +  𝜗LN + 𝜗IN = 1                                                          (12) 

 

      SN enhances the generalization process by calming the 

distribution at every dimension and adapting itself to the variety 

in data distributions. After normalization, the features are 

passed through a convolution operation: 

 

𝓅 =  𝕨 ∗ ℋ̂ + 𝑏                                                                   (13) 

 

      Where, 𝕨 is the convolution filter, 𝑏 is the bias, and ∗ 

denotes the convolution operation. Non-linearity is introduced 

using the ReLU activation function: 

 

𝜌′ = 𝑚𝑎𝑥(0, 𝜌)                                                                    (14) 

 

Dropout (𝒽) is another way of tackling overfitting: 

 

𝒽 = 𝓅′. 𝑟                                                                              (15) 

 

    Where, 𝑟 random mask of retention probability 𝜌. Finally, 

features are classified via the softmax function (𝔜): 

 

𝔜 =  
𝑒𝑥𝑝(𝒱𝒻 .ℌ+ ℬ𝒻)  

∑ 𝑒𝑥𝑝(𝒱𝒻
(𝒥)

.ℌ+ℬ𝒻
(𝒥)

  )𝒥

                                                        (16) 

 

        Where, 𝒱𝒻  and ℬ𝒻  are the weights and biases of the fully 

connected layer, respectively and 𝒥 indexes the output classes. 

The strong normalizing process guarantees a stable model and 

limits overfitting, giving the model better generalization for 

variable data conditions. Fig 3 shows the graphical 

representation of switchable normalization. 

 

 

 

Height

Width

Samples

SN

BN IN

LN

+

+

=

 
Fig 3 Graphical representation of Switchable 

Normalization 

 

 

 

 

E. Prediction 

 

In this phase, the spatial features are processed efficiently 

by the MobileNet component, and the Transformer model uses 

its attention mechanism to understand temporal and contextual 

relationships. It will develop the final model approach, called a 

MobileNet-Transformer Generative Model (MN-TGM). 

Such an enhancement of prediction by the system will provide 

the disaster management teams with their timeliness and 

accuracy so as to allow taking proper action before disaster 

occurrence. Finally, it is coupled with Fault Tree Analysis and 

Decision-Making Trial and Evaluation Laboratory in 

supporting strategic decision making and resource 

management. FTA outlines reasons for potential system failures 

with their root cause; DEMATEL quantifies interrelation 

between several factors that affect outcomes of disasters. 

 

a. MobileNet 

 



The traditional two-step procedure for extracting spatial 

features from input otherwise is depthwise separable 

convolution, which is adopted by MobileNet to achieve 

efficient implementation with much reduced computational 

complexity. Breaking standard convolution operations into 

spatial and channel-spaced computations makes this method 

more appropriate for resource-limited environments. The first 

one is depthwise convolution, which individually applies one 

filter per input channel. This approach captures spatial patterns 

for all the channels while holding low parameter counts.  

A mathematical formulation for depthwise convolution 

(𝐴𝑑𝑒𝑝𝑡ℎ(𝑘, 𝑙)) is given as: 

 

𝐴𝑑𝑒𝑝𝑡ℎ(𝑘, 𝑙) =  ∑ 𝑘𝑝 ∗ 𝑙𝑝
𝑃
𝑝=1                                          (17) 

 

      Where, 𝑘𝑝 represents the 𝑝𝑡ℎchannel of the input feature 

map, 𝑙𝑝 is the depthwise kernel corresponding to 𝑘𝑝, and ∗ 

denotes the convolution operation. 

       The second step is the pointwise convolution 

𝐴𝑝𝑜𝑖𝑛𝑡(𝐴𝑑𝑒𝑝𝑡ℎ , Ε), where the outputs from the depthwise 

convolution are recombined by way of 1×1 convolutions. This 

step allows for interaction between channels for models to learn 

complex patterns. It can be expressed as  

 

𝐴𝑝𝑜𝑖𝑛𝑡(𝐴𝑑𝑒𝑝𝑡ℎ , Ε) = ∑ 𝐸𝑞 . 𝐴𝑑𝑒𝑝𝑡ℎ,𝑞
𝑄
𝑞=1                                    (18) 

 
       Where, 𝐸𝑞  is the 1×1 conv kernel for the 𝑞𝑡ℎoutput channel, 

and 𝑞 is the number of output channels. Putting these two 

together gives the overall process of depthwise separable 

convolution (𝐴𝑠𝑒𝑝) with eq.19 

 

𝐴𝑠𝑒𝑝 = 𝐴𝑝𝑜𝑖𝑛𝑡(𝐴𝑑𝑒𝑝𝑡ℎ)                                                               (19) 

 

      This approach is efficient as it dramatically cuts down on 

the computational cost compared to standard convolutions. For 

standard convolutions, the cost 𝐶𝑜𝑠𝑡𝑠𝑡𝑑 is simply 

 

𝐶𝑜𝑠𝑡𝑠𝑡𝑑 = 𝐷𝑙
2 . 𝑃. 𝑄. 𝐷𝑔

2                                                         (20) 

 

       Where 𝐷𝑙
2 the spatial size of the kernel, 𝑃 is the number of 

input channels, 𝑄 is the number of output channels, and 𝐷𝑔
2 

represents the spatial dimensions of the feature map. In contrast, 

the cost of the depthwise separable convolution 𝐶𝑜𝑠𝑡𝑠𝑒𝑝 is 

given by, 

 

𝐶𝑜𝑠𝑡𝑠𝑒𝑝 = 𝐷𝑙
2. 𝑃. 𝐷𝑔

2 + 𝑃. 𝑄. 𝐷𝑔
2                                          (21) 

 

The computational savings can be quantified as  

 
𝐶𝑜𝑠𝑡𝑠𝑒𝑝

𝐶𝑜𝑠𝑡𝑠𝑡𝑑
=  

1

𝑃
+  

1

𝐷𝑔
2                                                                  (22) 

 

     It proves that the operations are burrowing faster. This 

efficiency makes MobileNet very suitable for real-time 

applications, for example, disaster forecasting, where speed of 

processing and resourcing in the current trend are very critical. 

Supported by depthwise separable convolutions, MobileNet 

offers a balance between speed and precision of efficient feature 

extraction and, therefore, represents a strong candidate for time-

sensitive scenarios that entail rapid and accurate spatial 

analysis. 

 

 

b. Transformer Generative Model 

 

A self-attention mechanism by the transformers operates 

on an input sequence after recognizing inter-feature 

relationships and dependencies concerning time. This approach 

proves immensely useful with disaster prediction, wherein 

spatial features from MobileNet are merged with temporal 

features. The self-attention process serves to provide different 

importance to each feature regarding the relation to every other 

feature within a sequence, directing the model towards the 

robust points in the data for accurate predictions. The self-

attention operation calculates the impact of one feature on 

another within the input sequence such that outputs are 

generated by weighting features by their contextual 

significance. 

 

The self-attention mechanism is mathematically defined as: 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (ℍ, 𝒰, 𝒵) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
ℍ𝒰𝑇

√𝑒𝒰
) 𝒵                         (23) 

 

     Here, ℍ (query matrix), 𝒰 (key matrix), and 𝒵 (value 

matrix) and 𝑇 represents the transpose that are derived from the 

input features. The term 
ℍ𝒰𝑇

√𝑒𝒰
 computes the similarity between 

the query and key vectors, scaled by  𝑒𝒰 to ensure numerical 

stability. The resulting values are passed through the softmax 

function to obtain probabilities that assign a certain level of 

importance to the features. The weighted output is then 

calculated through multiplication of the weights with the value 

matrix 𝒵. 

 

Weights assigned to the features: 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
ℍ𝒰𝑇

√𝑒𝒰
)                                               (24) 

 

The softmax function is defined as  

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝒸𝔶) =  
𝑒𝒸𝔶

∑ 𝑒𝒸𝔶𝔬
𝕟=1

                                                    (25) 

 

     The softmax function indicates that 𝒸𝔶 corresponds to the 

raw score (otherwise known as the logit) for class 𝔶 in a 

classification problem, before it is converted into a 

probability. 𝕟 is the term that represents the adding the overall 

possible classes.  

     Any set of weights will fit on a unit-interval probability 

distribution and represent the relative importance of each 

feature. 

 



      The multi-head mechanism extends this process by enabling 

the model to focus on different parts of the input data 

simultaneously. That is expressed as: 

 

𝑀𝐻𝐴(ℍ, 𝒰, 𝒵) = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1 , ℎ𝑒𝑎𝑑2, … . , ℎ𝑒𝑎𝑑𝒽)𝒵    (26) 

 

     Here, ℎ𝑒𝑎𝑑𝒽 indicates the attention output for the 𝒽 

attention head, while 𝑊𝔉 is the learned weight matrix which 

combines the results from all attention heads. 

 

     After computing the self-attention outputs, it is passed 

through a feed-forward neural network that composes it into a 

more refined format. The feedforward operation is expressed 

as: 

 

𝐹𝐹𝑁(𝒸) = 𝑅𝑒𝐿𝑢(𝒸𝑊1 + ℬ1) 𝑊2 + ℬ2                              (27) 

 

    Weights 𝑊1 and 𝑊2 are paralleled matrices, whereas, in the 

case of biases ℬ1 and ℬ2, they are the appertaining biasing 

terms.  

 

      In disaster prediction, through these computations, the 

model Transformer can dynamically shift its attention among 

various spatial and temporal features, allowing it to generate 

highly contextual outputs. By combining features extracted 

from MobileNet with temporal analysis capabilities of the 

Transformer, critical patterns and relationships in disaster data 

can be identified for better timing and accuracy for predictions. 

This would make the Transformer model for capturing the 

complex settings sufficient enough for putting into effect 

disaster management. 

 

 

 

 

 

F. Decision Making 

 

The Strategic Plan focuses upon the Fault Tree Analysis 

as well as Decision-Making Trial and Evaluation 

Laboratory methods (FTA-DEMATEL) for developing 

decisions and resource management. It evaluates the possible 

system failure and its underlying causes according to FTA. As 

on the other hand, it analyses the interrelation between different 

factors that influence the disasters. The integrated method 

developed by FTA and DEMATEL reflects a detailed view of 

disaster risk for superior capability development at decision-

making. This gives a robust framework for preventive measures 

and real-time response strategies that enable disaster 

management teams to address the upcoming crises in time. 

 

a. Fault Tree Analysis  

 

The Fault Tree Analysis (FTA) is a deductive, top-down 

method used to analyse the failure of systems by modelling the 

relationship that may exist between a cause or causes of failure 

and a primary undesired event, known as the top event. The top 

event-for instance, a system failure or disaster disruption-is 

treated alone through logical gates (e.g., an OR gate and an 

AND gate), which models its sub-events. The probability of a 

top event (𝓅𝑡𝑜𝑝) 

 

𝓅𝑡𝑜𝑝 = 1 − ∏ (1 − 𝓅𝓆)𝓍
𝓆=1                                                   (28) 

 

      Where,  𝓅𝓆 represents the probability of basic event 𝓆.  On 

the other hand, for an AND gate, the equation is  

 
𝓅𝑡𝑜𝑝 =  ∏ 𝓅𝓆

𝓍
𝓆=1                                                                          (29) 

 
       Probabilities are assigned to these basic events based on 

historical data or expert perceptions. When discussing various 

hazards, where disruption from a facility due to an earthquake 

(𝓅𝑒𝑘) or a flood (𝓅𝑓𝑑), then the combined probability for 

failure (𝓅𝑓𝑎𝑖𝑙𝑢𝑟𝑒) is  

 

𝓅𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 1 − (1 − 𝓅𝑒𝑘)(1 − 𝓅𝑓𝑑)                                   (30) 

 

      Simply put, in an AND gate where both hazards must 

operate concurrently to result in failure, and the probability is 

given by  

 
𝓅𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝓅𝑒𝑘  . 𝓅𝑓𝑑                                                            (31) 

 
       Moreover, in a complex event that required conditional 

probabilities such as disruption due to both facility 

Vulnerability (𝓅𝑣𝑏) and hazard occurrence(𝓅𝐻𝑜), the 

probability of event 𝓅𝑒𝑣𝑒𝑛𝑡 expression can be  

 

𝓅𝑒𝑣𝑒𝑛𝑡 =  𝓅𝑣𝑏 . 𝓅𝐻𝑜                                                             (32) 

 

This calculation ultimately helps in disaster management by 

locating fragilities and deciding what to prioritize for 

mitigation. 

 

b. Decision-Making Trial and Evaluation Laboratory 

methods  

The acronym DEMATEL stands for Decision-Making 

Trial and Evaluation Laboratory-a methodology that could 

analyse and visualize the cause and effect relationships among 

the factors of a complex system through distinguishing causes 

or driving group from effects or dependent group. DEMATEL 

employs a direct-influence matrix 𝓀𝒿𝓇 , where 𝓀𝒿𝓇  specifies the 

influence of factor 𝒿 on factor 𝓇. This matrix is normalized as  

 

𝑊𝒿𝓇 =  
𝓀𝒿𝓇

max(∑ 𝓀𝒿𝓇 ,∑ 𝓀𝒿𝓇𝓇𝓇 )
                                                           (33) 

 
      To provide comparative values for the factors involved. The 

total influence matrix ℂ takes into account direct and indirect 

influences, mathematically  

 

ℂ =  (ℐ − 𝑊)−1                                                                   (34) 

 



      Where ℐ denotes an identity matrix. Prominence analysis is 

defined as (+𝑅𝑊 + 𝐶𝑀); where 𝑅𝑊: row-sum and 𝐶𝑀: 

column-sum matrices of solution ℂ determining the total 

significance of a factor. The relationship (−𝑅𝑊 − 𝐶𝑀)will 

determine whether that factor mainly acts as a cause (+) or as 

an effect(−). 

 

      For example, if factor 𝔓 affects factors 𝔔 and ℜ with the 

normalized weights 𝑊𝔓𝔔 and 𝑊𝔓ℜ, respectively, the Total 

Influence Matrix for 𝑇𝔓 is updated with  

 

𝑇𝔓𝔓 =  (𝒷 −  𝑊𝔓)
−1

− 𝒷                                                  (35) 

 

      Similarly, the relative importance of a factor in the context 

of disaster management like preparedness 𝔓𝑟 and infrastructure 

𝒷 could be represented with relationships such as 

 

𝑇𝔓𝔓𝑟→𝒷   or  𝑇𝔓𝒷→𝔓𝑟                                                           (36) 

 

      Thereby prioritizing actions such computations guide 

decision-makers toward determining crucial interdependencies 

and developing viable plans of action. Fig 4 represents the 

protocol for the DEMATEL method. 

 

 

Generation of the group 

direct-influence matrix

Calculating importance 

weights of the factor

Production of the influential 

relation map 

Apply the normalized direct-

influence matrix

 

Fig 4 the protocol for DEMATEL method 

V. EXPERIMENTAL RESULTS 

 This section presents the suggested research plans 

empirical and performance evaluations. This part is divided into 

three subsections: research summary, comparative analysis, and 

simulation study.  

A. Simulation Study 

To implement the suggested research approaches, ns-

3.30.1 with python is employed and the Ubuntu 18.04 single 

primary operating system is utilized. Table 1 and 2 signifies the 

system specifications and the simulation parameter. Fig 5 

represents simulation environment of this research.  
TABLE 1 

System specifications 

Software Specifications OS Ubuntu 18.04 

Network Simulator ns-3.30.1 with 

python 

Hardware Specifications RAM 4GB 

Hard Disk 500GB 

 
TABLE 2 

SIMULATION PARAMETER 

 

Parameters Descriptions 
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10 
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Fig 5 simulation environment of this research 

 

 

B. Comparative Analysis 

Here this segment we compare the suggested methods with 

existing methods such as “cluster based routing protocol for 

information centric wireless sensor network (CBR-ICWSN) 

[18]”, improved deep convolutional neutral network 

(IDCNN)[32], rain forest-decision tree (TF-DT) [10], k-means 

clustering (K-MC) [28]. The performance metrics were details 

described one by one. 

a. Number of IoT nodes vs. Latency (ms) 

The latency becomes a vital aspect to consider in IoT-

enabled disaster management systems because of the number of 

IoT nodes in the network. Latencies tend to increase with the 

scaling up of the number of such nodes, primarily because of 

communication overhead, processing delays, and congestion in 

the network. The above can be represented as: 

𝐿 =  𝐿0 + 𝑘. 𝑀𝑜Ψ                                                                 (37) 

Where,  

𝐿 is represents as total latency in milliseconds.  

𝐿0 is the base latency  

𝑀𝑜 is the number of IoT nodes in the network.  

𝑘 is the proportionality constant dependent on the network 

capacity  

Ψ is a non-linear scaling effect of a node is reflected in the 

exponent above. 

 

 

TABLE 3 

Numerical outcomes of Latency (ms) 

(x-axis) – Number of IoT 

nodes 

Latency (ms)- (y-axis) 

CBR-

ICWSN 

KMC Proposed 

1 16 14 10 

2 20 18       12 

3 25 22 16 

4 35 30 20 

 

Fig 6  Number of IoT nodes vs. Latency (ms) 

 The Fig 6 and table 3 shows the latency values expressed 

in milliseconds for different algorithms such as CBR-ICWSN, 

KMC, and Proposed for different numbers of IoT nodes. 

Latency increased for all three methods as the number of IoT 

nodes increased. The latency of CBR-ICWSN starts from 16 ms 

and increases moderately until it reaches 35 ms as the node 

count is raised to four. The KMC algorithm starts -from 14 ms 

for the first node to 30 ms for the fourth node. The Proposed 

method achieves the lowest latency among all the schemes for 

any number of nodes, starting from 10 ms with one node to a 

maximum of 20 ms for four nodes. Hence, the proposed method 

has performed much better under a greater number of IoT nodes 

than CBR-ICWSN and KMC methods, which experience far 

more noticeability in terms of increasing latency as the number 

of nodes increases. 

b. Number of IoT nodes vs. Overfitting Rate (%) 

IoT nodes deployed in predictive analytics towards disaster 

management can complicate model training and increase risks 



of overfitting. Overfitting means that this process resulted in a 

model that has internalized patterns related to the particular 

training data instead of generalizations for unseen data. Such 

relation is mathematically expressed as: 

𝑂𝑓 =  Ψ. 𝑁2 +  𝛽                                                                 (38) 

𝑂𝑓 : Overfitting rate (%) 

Ψ : Proportionality constant reflecting the sensitivity of 

overfitting to the number of nodes 

𝛽 : Baseline overfitting rate without IoT nodes 

TABLE 4 

Numerical outcomes of Overfitting Rate (%) 

(x-axis) – Number of IoT 

nodes 

Overfitting Rate (%)- (y-axis) 

IDCNN KMC Proposed 

1 15 12 10 

2 20 18 12 

3 35 30 20 

4 65 45 35 

 

Fig 7   Number of IoT nodes vs. Overfitting Rate (%) 

 The comparison of the overfitting rates across different IoT 

nodes shows in Fig 7 and table 4. while IDCNN method exhibits 

by far the most significant escalation in overfitting rate 

beginning at 15% for 1 node and soaring up to 65% for 4 nodes, 

KMC, although rising, has this increase at a slower pace, going 

from 12% for 1 node to 45% for 4 nodes. The Proposed method 

shows, however, that overfitting rates increase much more 

slowly from an initial 10% for 1 node up to 35% for 4 nodes. 

This indicates the better generalization power of the proposed 

method with increasing number of IoT nodes, hence less 

proneness to overfitting compared to IDCNN and KMC. The 

overall impression would therefore be that the proposed method 

is more robust in dealing with up-scaled IoT node 

configurations. 

c. Number of IoT nodes vs. Prediction Accuracy (%) 

The relationship between IoT node count 𝑁, and prediction 

accuracy 𝑃, in disaster management could be described as: 

𝑃 = 𝑃𝑚𝑎𝑥(1 − 𝑒−𝑢𝑁)                                                           (39) 

𝑃 : Prediction accuracy 

𝑃𝑚𝑎𝑥  : Maximum prediction accuracy that can be attained 

𝑢 : Sensitivity factor; how quickly the prediction accuracy 

improves with the increase in the number of nodes. 

As 𝑁 increases, 𝑃 asymptotically approaches 𝑃𝑚𝑎𝑥 , indicating 

diminishing returns after a certain density of IoT nodes. 

TABLE 5 

Numerical outcomes of Prediction Accuracy (%) 

(x-axis) – Number of IoT 

nodes 

Prediction Accuracy (%)- (y-axis) 

RF-DT KMC Proposed 

1 20 30 40 

2 30 50 70 

3 40 60 80 

4 60 70 90 

 

Fig 8 Number of IoT nodes vs. Prediction Accuracy (%) 

Table 5 and Fig 8 show the prediction accuracy percentage 

achieved by RF-DT, KMC, and the proposed method, which 

cover various numbers of IoT nodes. The results point to a 

general increase in prediction accuracy with the growing 

number of nodes. For a single IoT node, the Proposed method 

reached an accuracy level of 40%, ahead of RF-DT, which had 

an accuracy of 20%, followed by KMC with 30% accuracy. 

With two nodes, the proposed method reached 70%, which was 

again very much ahead of RF-DT at 30% and KMC at 50%. For 

three nodes, the proposed method now reaches 80%, while RF-

DT and KMC are behind at 40% and 60%, respectively. Finally, 

with four nodes, the proposed method projected a peak 

accuracy of 90%, while KMC and RF-DT lag at 70% and 60%, 

respectively. All of this demonstrates the dominating 

performance of the proposed method with respect to prediction, 

especially when the system is scaled up. 

d. Number of Epochs vs. Model Accuracy (%) 

In the context of IoT-driven predictive analytics for 

disaster management, epochs stand for the number of iterations 

the model undergoes during training. The more epochs trained, 

the higher becomes the model accuracy, as long as sufficient 

epochs do not overtrain and produce overfitting. The relation 

between epochs and accuracy is generally represented in the 

following form: 

 

𝑀𝐴(𝐸) =  
1

1+ 𝑒−(𝑤𝐸+𝑏)                                                           (40) 



𝑀𝐴(𝐸) : Model accuracy after 𝐸 epochs 

𝑤 : represents the weight (learning rate) influencing the rate of 

accuracy improvement. 

𝑏 : is the bias term determining the initial accuracy level. 

     This sigmoid curve explains that there is an increasing 

accuracy with higher numbers of epochs until such a time as the 

function flattens out. 

TABLE 6 

Numerical outcomes of Model Accuracy (%) 

(x-axis) – Number of IoT 

nodes 

Model Accuracy (%)- (y-axis) 

RF-DT KMC Proposed 

1 15 20 25 

2 30 40 50 

3 50 60 75 

4 70 90 95 

 

 

Fig 9     Number of Epochs vs. Model Accuracy (%) 

The numerical values in Table 6 and Fig 9 reflect a 

comparative analysis of model accuracies of the RF-DT, KMC, 

and Proposed approaches with respect to the number of IoT 

nodes. With an increase in the number of nodes, a steady 

increase in the model accuracy was observed in all models, with 

the proposed approach outperforming all others in every 

instance. To provide an example, with 1 node, RF-DT reported 

accuracy at 15%, KMC at 20%, and the proposed method at 

25%. At 4 nodes, the accuracy steadily rises to 70% in RF-DT, 

90% in KMC, 95% in the proposed approach. This trend shows 

that there is a constant increase in the accuracy level afforded 

by the proposed method, which shines brighter at higher node 

levels where efficient handling of IoT data becomes crucial. 

Therefore, the proposed approach can be seen as a more 

dependable choice for predictive analytics with IoT support. 

e. Number of Clusters vs. Energy Efficiency (%) 

The number of clusters impacts energy efficiency in IoT 

systems by determining the way data is partitioned and 

processed. A higher number of clusters will reduce energy 

consumption through task distribution but may exhibit higher 

communication overhead. This relationship can be expressed 

as: 

𝐸𝐸 =  
1

1+ ∝.𝑐
                                                                          (41) 

• 𝐸𝐸 which is energy efficiency (%); 

• 𝑐 is the number of clusters; 

• ∝ is a constant which represents the overhead cost per 

cluster. 

The equation suggests that energy efficiency improves as 

the number of clusters increases to some point and thereafter 

decreases with the increase of communication overheads. 

TABLE 7 

Numerical outcomes of Energy Efficiency (%) 

(x-axis) – Number of 

Clusters 

Energy Efficiency (%)- (y-axis) 

CBR-

ICWSN 

KMC Proposed 

1 15 25 30 

2 30 45 50 

3 50 65 70 

4 75 85 92 

 

Fig 10 Number of Clusters vs. Energy Efficiency (%) 

 The energy efficiency comparison among the methods 

CBR-ICWSN, KMC, and Proposed shows a trend of 

improvement with an increase in the number of clusters in table 

7 and Fig 10. At one cluster, the energy efficiency remains low 

in CBR-ICWSN at 15%; KMC, at 25%; while the Proposed 

method achieves 30%. There is a huge leap in efficiency at two 

clusters with CBR-ICWSN, KMC, and the proposed 

approaches increasing to 30%, 45%, and 50%, respectively. 

This trend persists with three clusters, where efficiency rises to 

50%, 65%, and 70%. With four clusters, the proposed method 

is more efficient, being 92% as opposed to KMC, which is 85%, 

and CBR-ICWSN, which is 75%. This means that the proposed 

method has a better energy core always compared to both KMC 

and CBR-ICWSN in all cluster numbers, especially with an 

increase in the number of clusters. 

C. Research summary 

 The IoT devices use real-time data and predictive analytics 

in a better way of managing disaster forecasts and responses. 

Meanwhile, other methods still face challenges such as the 

denoising effect, hotspots, improper allocation of resources, 

overfitted data, and complexity of the embedded decision-

making processes. To address these issues, a predictive 



analytics framework for IoT-based disaster management is 

established.The framework consists of the creation of a network 

of IoT nodes, a lighthouse, a base station, and vehicles that 

generate the synthetic data. A Dual Denoising Autoencoder has 

been used to enhance the quality of data, and the Tuna-Swarm 

Algorithm for optimizing the clustering and resource allocation 

process. Switchable Normalization approaches used in a 

custom SN-CNN mitigated the overfitting of models. Mobile 

Net-Transformer Generative Model (MN-TGM) was used for 

prediction. Finally, Fault Tree Analysis and the Decision-

Making Trial and Evaluation Laboratory (FTA-DEMATEL) 

enable decision-making. Ns3.30.1 simulation was used to 

validate the performance metrics like latency (ms), the 

prediction accuracy (%), model accuracy (%), and the effective 

energy efficiency (%). The framework will assure timely 

interventions, exhaustive utilization of resources, and effective 

disaster management. The performance metrics were 

elaborately in Fig 6-10 and Table 3- 7.   

VI. CONCLUSION 

  The predictive analytics system for IoT disaster 

management solves critical issues of existing methods 

regarding denoising effects, inefficiencies in resource 

allocation, data overfitting, and decision-making complexities. 

A robust network consisting of IoT nodes, a lighthouse, a base 

station, and vehicles, along with advanced techniques like  

Denoising Autoencoder, Tuna-Swarm Algorithm, and 

Switchable Normalization with SN-CNN, has guaranteed better 

data quality, optimized resource utilization, and increased 

model performance.  The mobile net-transformer generative 

model MN-TGM enables accurate and timely disaster 

predictions, whereas FTA-DEMATEL streamlines decision-

making processes.  Simulations conducted in Ns3.30.1 validate 

the system's efficiency across important performance 

parameters, such as latency, prediction accuracy, model 

accuracy, and energy efficiency.  This framework thereby gives 

an all-encompassing solution for IoT-enabled disaster 

management, ensuring timely interventions, efficient resource 

utilization, and reliable decision-making processes, which 

ultimately reduce risks due to disasters and the impact of those 

disasters. 
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